THREAT MONITORING IN DEFENSE AND SECURITY SYSTEMS – METHODOLOGICAL ASPECTS
 
 
More details
Hide details
1
WOJSKOWA AKADEMIA TECHNICZNA W WARSZAWIE WYDZIAŁ LOGISTYKI INSTYTUT SYSTEMÓW BEZPIECZEŃSTWA I OBRONNOŚCI
 
 
Publication date: 2019-01-25
 
 
Przegląd Nauk o Obronności 2018;(5):203-229
 
ABSTRACT
The article addresses the problem of increasing the effectiveness of warning systems about threats. The problem of so-called „surprises” is the problem of these types of systems, which are the result of not being able to see the symptoms of incoming events in time, despite the presence of technologically advanced monitoring systems, including hazard tracking systems. The aim of the article is to analyze selected theoretical and methodological aspects of monitoring war-ning signals in terms of the possibility of improving the effectiveness of warning systems. The results of the analyzes carried out present proposals for a new theoretical as well as methodological approach to the issues of hazard monitoring. The presented theoretical approach, as well as related models, can have a beneficial effect on the effectiveness of warning systems.
REFERENCES (84)
1.
M. Aly, N.B. Turk-Browne, How Hippocampal Memory Shapes, and Is Shaped by, Attention, w: D. E. Hannula, M. C. Duff (red.), The Hippocampus from Cells to Systems: Structure, Connectivity, and Functional Contributions to Memory and Flexible Cognition, Springer International Publishing, Cham 2017, pp. 369-403.
 
2.
Antoniou P.H., The Igor Ansoff Anthology, BookSurge Publishing, North Charleston, SC, USA 2006.
 
3.
Barnouw J., Peirce, Semeiotic, and Pragmatism, “New Vico Studies”, 5, 1987, pp. 187-191, doi:10.5840/newvico1987520.
 
4.
Barth F.G., Giampieri-Deutsch P., Klein H.D., Sensory perception: mind and matter, Springer Science & Business Media, New York, Wien 2012.
 
5.
Bieńkowska A., Analiza rozwiązań i wzorce controllingu w organizacji, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2015.
 
6.
Biliński W., Systemy wczesnego ostrzegania w wielkich organizacjach gospodarczych na przykładzie wybranych krajów kapitalistycznych, Centrum Informacji Technicznej i Ekonomicznej, Warszawa 1988.
 
7.
N.E. Blankenstein, E. Schreuders, J.S. Peper, E.A. Crone, A.C.K. van Duijvenvoorde, Individual differences in risk-taking tendencies modulate the neural processing of risky and ambiguous decision-making in adolescence, “NeuroImage”, 172, 2018, pp. 663-673, doi:https://doi.org/10.1016/j.neur...
 
8.
Brito-Morales I., García Molinos J., Schoeman D.S., Burrows M.T., Połoczańska E.S., Brown C.J., Richardson A.J., Climate Velocity Can Inform Conservation in a Warming World, “Trends in Ecology & Evolution”, 33(6), 2018, pp. 441-457, doi.org/10.1016/j.tree.2018.03.009.
 
9.
D.E. Broadbent, Perception and communication, Pergamon Press, Oxford 1958.
 
10.
Bunge S.A., Souza M., Executive Function and Higher-Order Cognition: Neuroimaging, w: L. R. Squire (red.), Encyclopedia of Neuroscience, Academic Press, Oxford 2009, pp. 111-116.
 
11.
Cabała P., Systemy wczesnego ostrzegania w przedsiębiorstwie, Wydawnictwo Uniwersytetu Ekonomicznego, Kraków 2008.
 
12.
Capiga M. i in., Systemy wczesnego ostrzegania w ocenie działalności instytucji finansowych, Wydawnictwo CeDeWu, Warszawa 2013.
 
13.
E. Chudnoff, D. Didomenico, The Epistemic Unity of Perception, “Pacific Philosophical Quarterly”, 96(4), 2015, pp. 535-549, doi:10.1111/papq.12114
 
14.
Ćwik B., Postrzeganie sygnałów ostrzegających organizację w sytuacjach niedeterministycznych, Warszawa 2017.
 
15.
Ćwik B., A survey on willingness to provide warning information within a company during crisis, Proceedings of 4th International Conference on Management Science and Management Innovation, June 23-25, 2017, Suzhou, China, Atlantis Press, 2017, pp. 170-174, doi:10.2991/msmi-17.2017.38.
 
16.
Ćwik B., Distortions in perception of warning signals about risks and threats to an organization, Proceedings of II International Conference on Economics and Management Innovations (ICEMI 2017), Economics and Management Innovations, VOLKSON PRESS, pp. 309-312, doi: 10.26480/icemi.01.2017.309.312.
 
17.
Ćwik B., Świerszcz K., Perception of Warning Signals in Organizational Security Management Systems, Proceedings of the 2nd International Conference on Management, Education and Social Science (ICMESS 2018), Advances in Social Science, Education and Humanities Research, Qingdao, China 2018, pp. 478-482.
 
18.
Ćwik B., Świerszcz K., Conception of warning signals in organizational monitoring systems, Proceedings of the 31th International Business Information Management Association Conference (IBIMA 2018), 25-26 April, Milan, Italy, 2017.
 
19.
Deng W., Sloutsky V.M., Selective attention, diffused attention, and the development of categorization, “Cognitive Psychology”, 91, 2016, pp. 24-62, doi.org/10.1016/j.cogpsych.2016.09.002.
 
20.
Eichenbaum H., Hippocampus: Cognitive Processes and Neural Representations that Underlie Declarative Memory, “Neuron”, 44(1), 2004, pp. 109-120, doi.org/10.1016/j.neuron.2004.08.028.
 
21.
Eiser J.R., Bostrom A., Burton I., Johnston D.M., McClure J., Paton D., White M.P., Risk interpretation and action: A conceptual framework for responses to natural hazards, “International Journal of Disaster Risk Reduction”, 1, 2012, pp. 5-16, doi:10.1016/j.ijdrr.2012.05.002.
 
22.
Fijałkowska D., Systemy wczesnego ostrzegania w controllingu strategicznym, Controlling i Rachunkowość Zarządcza, 2/2004.
 
23.
Friedman N.P., Miyake A., Unity and diversity of executive functions: Individual differences as a window on cognitive structure, “Cortex”, 2017, 86, pp. 186-204, doi.org/10.1016/j.cortex.2016.04.023.
 
24.
Góźdź H., Michalak J., Ostrzeganie i alarmowanie ludności, Akademia Obrony Narodowej, Sztab Obrony Cywilnej Kraju, Warszawa 1996.
 
25.
Hausman C.R., Pragmaticism and semiotic, w: C. R. Hausman (red.) Charles S. Peirce's Evolutionary Philosophy, Cambridge University Press, Cambridge 1993, pp. 57-93.
 
26.
Hausman C. R., Anderson D.R., Peirce on Interpretation. In Conversations on Peirce: Reals and Ideals, 2012, pp. 114-131, doi:10.5422/fordham/9780823234677.003.0007.
 
27.
M. Heidegger, Being and Time, Harper & Row Publishers Inc, New York 1962.
 
28.
Hiltunen E., The future sign and its three dimensions, “Futures”, 40(3), 2008, pp. 247-260, doi:org/10.1016/j.futures.2007.08.021.
 
29.
Hopej M., Kamiński R., Struktury organizacyjne współczesnych organizacji, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2010.
 
30.
Hunek K. J., Systemy wczesnego ostrzegania, Przegląd Przedsiębiorstwa 5/1984.
 
31.
E. Husserl, Ideas for a Pure Phenomenology and Phenomenological Philosophy: First Book: General Introduction to Pure Phenomenology, Hackett Publishing Company Inc, Indianapolis, Indiana 2014.
 
32.
Janik P., Monitoring i prognozowanie sytuacji kryzysowych w zakresie klęsk żywiołowych, katastrof technicznych i innych zagrożeń, AON, Warszawa 2001.
 
33.
Johnson-Laird P.N., Mental models: towards a cognitive science of language, inference, and consciousness, Harvard University Press Cambridge, MA , USA 1983.
 
34.
Johnson E.J., Tversky A., Representations of perceptions of risks, "Journal of Experimental Psychology: General”, 113 (1), 1984, s. 55-70, doi:10.1037/0096-3445.113.1.55.
 
35.
Kilstrup M., Naturalizing semiotics: The triadic sign of Charles Sanders Peirce as a systems property, “Progress in Biophysics and Molecular Biology”, Vol. 119, 2015, pp. 563-575.
 
36.
Konieczny J., Bezpieczeństwo biologiczne, chemiczne, jądrowe i ochrona radiologiczna, Wydawnictwo Garmond, Poznań-Warszawa 2005.
 
37.
Mączyńska E., Zawadzki M., Dyskryminacyjne modele predykcji upadłości przedsiębiorstw, Ekonomista nr 2, 2006, s. 205-217.
 
38.
McBean G. A., Introduction of a New International Research Program: Integrated Research on Disaster Risk - The Challenge of Natural and Human-Induced Environmental Hazards, w: Geophysical Hazards, Springer Netherlands, 2009, pp. 59-69.
 
39.
McDowell J., Perceptual Experience: Both Relational and Contentful, “European Journal of Philosophy”, 21(1), 2013, pp. 144-157, doi:10.1111/ejop.12005.
 
40.
Merleau -Ponty M., Phenomenology of Perception, Routledge, London, New York 2014.
 
41.
Menary R., Cognitive Integration: Mind and Cognition Unbounded, Palgrave Macmillan, London 2007.
 
42.
Mishra S., Lalumière M.L., Individual differences in risk-propensity: Associations between personality and behavioral measures of risk, “Personality and Individual Differences”, 50(6), 2011, s. 869-873, doi.org/10.1016/j.paid.2010.11.037.
 
43.
Miyashita Y., Cognitive Memory: Cellular and Network Machineries and Their Top-Down Control, “Science”, 306(5695), 2004, pp. 435-440.
 
44.
Morss, R. E., Cuite, C. L., Demuth, J. L., Hallman, W. K., & Shwom, R. L., Is storm surge scary? The influence of hazard, impact, and fear-based messages and individual differences on responses to hurricane risks in the USA, “International Journal of Disaster Risk Reduction”, 30, 2018, pp. 44-58.
 
45.
E.A. Murray, T.J. Bussey, L.M. Saksida, Visual Perception and Memory: A New View of Medial Temporal Lobe Function in Primates and Rodents, “Annual Review of Neuroscience”, 30(1), 2007, pp. 99-122, doi:10.1146/annurev.neuro.29.051605.113046.
 
46.
Nathan Kutz J., Neurosensory network functionality and data-driven control, “Current Opinion in Systems Biology”, 2018, doi.org/10.1016/j.coisb.2018.08.013.
 
47.
Norwich K.H., A physical basis for sensory perception, “Physica A: Statistical Mechanics and its Applications”, 414, 2014, s. 61-75, doi.org/10.1016/j.physa.2014.07.032.
 
48.
Oakes L.M., Categorization Skills and Concepts, w: M. M. Haith, J. B. Benson (red.), Encyclopedia of Infant and Early Childhood Development, Academic Press, San Diego 2008, pp. 249-259.
 
49.
Oblak K., Ličen M., Slapničar S., The role of cognitive frames in combined decisions about risk and effort, “Management Accounting Research”, 39, 2018, pp. 35-46, doi.org/10.1016/j.mar.2017.07.001.
 
50.
Patel A., Jain S., Formalisms of Representing Knowledge, “Procedia Computer Science”, 125, 2018, pp. 542-549, doi.org/10.1016/j.procs.2017.12.070.
 
51.
Prusak B., Nowoczesne metody prognozowania zagrożenia finansowego przedsiębiorstw, Difin, Warszawa 2005.
 
52.
Radosiński E., Wprowadzenie do sprawozdawczości, analizy i informatyki finansowej, Wydawnictwo Naukowe PWN, Warszawa 2010.
 
53.
Ratajczak Z.,Carpenter, S.R., Ives A.R., Kucharik C.J., Ramiadantsoa T., Stegner M.A., Turner M.G., Abrupt Change in Ecological Systems: Inference and Diagnosis, “Trends in Ecology & Evolution”, 33(7), 2018, pp. 513-526, doi.org/10.1016/j.tree.2018.04.013.
 
54.
Reeder R.R., Individual differences shape the content of visual representations, “Vision Research”, 141, 2017, pp. 266-281, doi.org/10.1016/j.visres.2016.08.008.
 
55.
Reichert M.S., Quinn J.L., Cognition in Contests: Mechanisms, Ecology, and Evolution, “Trends in Ecology & Evolution”, 32(10), 2017, pp. 773-785, doi.org/10.1016/j.tree.2017.07.003.
 
56.
Rosch E., Cognitive representations of semantic categories, “Journal of Experimental Psychology: General”, 104(3), 1975, pp. 192-233, doi.org/10.1037/0096-3445.104.3.192.
 
57.
Rysz S. J., Ostrzeganie, alarmowanie, powiadamianie ratunkowe, Difin, Warszawa 2017.
 
58.
Rosing M., Kemp N., Hove M., Ross J.W., Process Tagging-A Process Classification and Categorization Concept, w: M. von Rosing, A.W. Scheer, H. von Scheel (red.), The Complete Business Process Handbook, Morgan Kaufmann, Boston 2015, pp. 123-171.
 
59.
Van Rullen R., Perceptual Cycles, “Trends in Cognitive Sciences”, 20(10), 2016, pp. 723-735, doi.org/10.1016/j.tics.2016.07.006.
 
60.
Sant’Anna A., Perception Pragmatized: a Pragmatic Reconciliation of Representationalism and Relationalism, “Philosophia”, 46(2), 2018, s. 411-432, doi:10.1007/s11406-017-9919-8.
 
61.
J.P. Sartre, Being and Nothingness, Washington Square Press, Washington 1992.
 
62.
Schank R.C., Abelson R.P., Scripts, plans, goals, and understanding, w: A. Collins & E. E. Smith (red.), Readings in Cognitive Science, Morgan Kaufmann 1988, pp. 190-223.
 
63.
Schellenberg S., The particularity and phenomenology of perceptual experience, “Philosophical Studies”, 149(1), 2010, pp. 19-48, doi:10.1007/s11098-010-9540-1.
 
64.
Schellenberg S., The relational and representational character of perceptual experience, w: B. Brogaard (red.), Does perception have content?, Oxford University Press, Oxford 2014.
 
65.
Schellenberg S., Perceptual Particularity, “Philosophy and Phenomenological Research”, 93(1), 2016, pp. 25-54, doi:10.1111/phpr.12278.
 
66.
Shimizu M., Clark A.L., Interconnected Risks, Cascading Disasters and Disaster Management Policy: A Gap Anaysis, “GRF Davos Planet@Risk”, 3(2), 2015, s. 260-270.
 
67.
Shipstead Z., Lindsey D.R.B., Marshall R.L., Engle R.W., The mechanisms of working memory capacity: Primary memory, secondary memory, and attention control, “Journal of Memory and Language”, 72, 2014, pp. 116-141, doi.org/10.1016/j.jml.2014.01.004.
 
68.
Siegel S., The Contents of Visual Experience, Oxford University Press, Oxford 2012.
 
69.
J.S. Simons, H.J. Spiers, Prefrontal and medial temporal lobe interactions in long-term memory, “Nature Reviews Neuroscience”, 4, 2003, p. 637, doi:10.1038/nrn1178
 
70.
Solomon K.O., Medin D.L., Lynch E., Concepts do more than categorize, “Trends in Cognitive Sciences”, 3(3), 1999, pp. 99-105, doi.org/10.1016/S1364-6613(99)01288-7.
 
71.
Sternberg J.R., Cognitive Psychology (6 ed.), Cengage Learning, Boston, M., USA 2011.
 
72.
Śladowski S., Aspekty militarne i niemilitarne zagrożeń środowiskowych, Wydawnictwo AON, Warszawa 2000.
 
73.
Świerszcz K., Poznanie naukowe wobec problemów rozwoju gospodarczo-cywilizacyjnego, Zeszyt SAN, Nr 3, Polityka międzynarodowa a globalizacja: wybrane aspekty, Łódź 2012.
 
74.
Świerszcz K., The Impact of Energy Poverty on the Level of Social Security, Proceedings of 4th International Conference on Management Science and Management Innovation (MSMI 2017), Suzhou, China, 2017, AEBMR-Advances in Economics Business and Management Research, Volume 31, pp. 175-178.
 
75.
Takeda M., Brain mechanisms of visual long-term memory retrieval in primates, “Neuroscience Research”, 2018, doi.org/10.1016/j.neures.2018.06.005.
 
76.
Takeuchi D., Hirabayashi T., Tamura K., Miyashita Y., Reversal of Interlaminar Signal Between Sensory and Memory Processing in Monkey Temporal Cortex, “Science”, 331(6023), 2011, p. 1443.
 
77.
Trofimov V.T., Averkina T.I., Engineering Geological Structures of the Earth, “Earth Science Frontiers”, 14(2), 2007, pp. 257-267, doi.org/10.1016/S1872-5791(07)60019-0.
 
78.
Wang Z., Zhao B., Method of accurate-fast magnitude estimation for earthquake early warning -Trial and application for the 2008 Wenchuan earthquake, “Soil Dynamics and Earthquake Engineering”, 109, 2018, pp. 227-234.
 
79.
Wierzbiński J., Systemy wczesnego ostrzegania w planowaniu strategicznym, Toruńska Szkoła Zarządzania, Toruń 1998.
 
80.
Yager R.R., Categorization in multi-criteria decision making, “Information Sciences”, pp. 460-461, 2018, pp. 416-423, doi.org/10.1016/j.ins.2017.08.011.
 
81.
Zaleska M., Identyfikacja ryzyka upadłości przedsiębiorstwa i banku: systemy wczesnego ostrzegania, Wydawnictwo Difin, Warszawa 2002.
 
82.
Zhu N., Cai Y.-h., Sun F.-w., Yang-yang Y.-f, Mapping the emotional landscape: The role of specific emotions in conceptual categorization, “Acta Psychologica”, 159, 2015, pp. 41-51, doi.org/10.1016/j.actpsy.2015.05.003.
 
83.
Zimbardo P.G., Gerrig R.J., Psychology and Life, Pearson College Division, London 2014.
 
84.
R. Xia, S. Guan, D.L. Sheinberg, A Multilayered Story of Memory Retrieval, “Neuron”, 86(3), 2015, pp. 610-612, doi:https://doi.org/10.1016/j.neur...
 
eISSN:2719-6763
ISSN:2450-6869
Journals System - logo
Scroll to top